
 BPS states in (2,0) theory on  × T5

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP03(2009)021

(http://iopscience.iop.org/1126-6708/2009/03/021)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 10:41

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/03
http://iopscience.iop.org/1126-6708/2009/03/021/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
3
(
2
0
0
9
)
0
2
1

Published by IOP Publishing for SISSA

Received: January 9, 2009

Accepted: February 9, 2009

Published: March 4, 2009

BPS states in (2, 0) theory on R × T 5
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1 Introduction

Understanding the conceptual foundations of the six-dimensional quantum theories with

(2, 0) supersymmetry [1] remains, at least for the present author, an outstanding challenge.

Such a theory is completely specified by an element Φ of the ADE-classification, with no

further discrete or continuous parameters. In this paper, we will consider it on a space-time

of the form

R × T 5 = R × R
5/Λ. (1.1)

Here the factor R denotes time, we identify the spatial R
5 factor with its dual (R5)∗ by

means of the standard flat metric, and Λ ⊂ R
5 is a rank five lattice.

A basic question is what the possible values of the spatial momentum p are. One might

think that these should be given by the lattice

Λ∗ ≃ H1(T 5,Z) ⊂ H1(T 5,R) (1.2)

dual to Λ, but this is not quite true. To explain this point, we consider a further discrete

quantum number of type Φ (2, 0) theory known as the ’t Hooft flux:

f ∈ H3(T 5, C) (1.3)
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Here the finite abelian group C is isomorphic to the center subgroup of the simply connected

Lie group G corresponding to the element Φ of the ADE-classification. Thus

C ≃ Γweight/Γroot, (1.4)

where Γweight and its dual Γroot are the weight- and root-lattices of G respectively. The

inner product on the weight space of G induces a perfect pairing on C with values in

R/Z ≃ U(1). As we will explain in more detail later, it is then possible to define a product

f · f ∈ H1(T 5,R/Z), (1.5)

and the correct quantization law for the momentum p ∈ H1(T 5,R) can be shown to be

p− f · f ∈ H1(T 5,Z) ≃ Λ∗. (1.6)

The main theme of this paper is to analyze the implications of supersymmetry. The

generators Qi, i = 1, . . . , 4 of infinitesimal supersymmetries transform in the fundamental

representation 4 of the Sp(4) R-symmetry group. In six-dimensional Minkowski space, they

also transform as a Weyl spinor under the SO(1, 5) Lorentz group, and obey a symplectic

Majorana condition. (On R× T 5, the Lorentz group is of course broken to a discrete (and

generically trivial) subgroup of the SO(5) spatial rotation group, so actually only the Sp(4)

representation content 4⊕4⊕4⊕4 of the supercharges is relevant. But to avoid cluttering

the notation, it is still convenient to present some formulas in an SO(1, 5) covariant way.)

The equal-time anti-commutation relations of the supercharges can be written in the form

{Qi, Q†
j} = δi

j

(

E1l − γ0γ · p
)

, (1.7)

where E and p denote the energy and the momentum respectively. (γ0 and γ are the

temporal and spatial Dirac matrices). Unitarity requires the matrix on the right hand side

to be positive semi-definite, from which follows that

E ≥ |p| . (1.8)

We may thus distinguish between three broad classes of states:

• Vacuum states have

E = p = 0, (1.9)

so that the right hand side of (1.7) is identically zero. In view of (1.6), a necessary

requirement for such a state is that f · f = 0. It is then consistent to impose that

these states are annihilated by all supercharges. The spectrum of such states was

investigated in [2] (in greatest detail for the A- and D-series).

• BPS states generically have

E = |p| > 0, (1.10)

so that the right hand side of (1.7) has half maximal rank. Indeed,

E1l − γ0γ · p = E (1l − γp) , (1.11)

– 2 –
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where the transverse chirality matrix γp defined by

γp = |p|−1 γ0γ · p (1.12)

has eigenvalues +1 and −1 with equal multiplicities. It is then consistent to impose

that these states are annihilated by the supercharges with positive chirality. To

understand the structure of such a multiplet, it is convenient to regard the remaining

supercharges of negative chirality as a set of fermionic creation operators transforming

in the 4 representation of Sp(4) and the corresponding annihilation operators (also

in the 4 representation). For given values of the momentum p and the ’t Hooft flux

f , we start with a set of states which are annihilated by the annihilation operators

and transform in some (in general reducible) representation R(f,p) of Sp(4). Acting

with the creation operators then builds up a multiplet of states transforming as

(B ⊕ F ) ⊗R(f,p), (1.13)

where the Sp(4) representations B and F (for ‘Bosonic’ and ‘Fermionic’), are given

as direct sums of the even and odd alternating powers of 4 respectively:

B = 1 ⊕ (4)2a ⊕ (4)4a
= 1 ⊕ 1⊕ 1 ⊕ 5

F = 4 ⊕ (4)3a
= 4 ⊕ 4. (1.14)

As usual, the spectrum of such states, as described by the Sp(4) representation R(f,p),

can be expected to be invariant under a large class of continuous deformations of the

theory, notably including deformations of the flat metric on T 5. There is thus some

hope of determining it explicitly, at least in some cases. This is the goal of the present

paper. An important point is that the representation R(f,p) can only depend on the

orbit [f, p] of the pair (f, p) under the SL5(Z) mapping class group of T 5.

• Non-BPS states have

E > |p| , (1.15)

so that the right hand side of (1.7) has maximal rank. The fermionic creation opera-

tors, as well as the annihilation operators, then transform in the 4⊕4 representation

of Sp(4), and build up multiplets of the form

(B ⊕ F ) ⊗ (B ⊕ F ) ⊗R′
(f,p) (1.16)

for some Sp(4) representation R′
(f,p). Understanding the structure of this representa-

tion and the corresponding energies E appears out of reach at the present, though.

We will now briefly describe the strategy to compute the BPS spectrum and outline the

rest of the paper. As we discuss in section two, the key point is to consider T 5 as a product

T 5 = T 4 × S1. (1.17)

– 3 –
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Type Φ (2, 0) theory on R × T 5 can then be regarded as the ultraviolet completion of

maximally supersymmetric Yang-Mills theory on R × T 4 with gauge group

Gadj = G/C (1.18)

of adjoint type, and a coupling constant determined by the radius of the S1 factor [3].

The momentum p of (2, 0) theory then decomposes into its components p̃ along the T 4

directions, and its component k along the S1 direction. In the Yang-Mills theory, these are

interpreted as the momentum and instanton number respectively. Similarly, the ’t Hooft

flux f of the (2, 0) theory decomposes into quantities m and e of the Yang-Mills theory.

The (discrete abelian) magnetic ’t Hooft flux m characterizes (together with the instanton

number k) the topological class of the gauge bundle. The (discrete abelian) electric ’t

Hooft flux e determines the transformation properties of physical states under ‘large’ gauge

transformations (i.e. gauge transformations that cannot be continuously deformed to a

trivial transformation). In terms of these decompositions of p and f , the quantization

law (1.6) now amounts to certain topological facts concerning the gauge bundle (a principal

Gadj bundle over T 4).

In section three, we take the weak coupling (small radius) limit. For non-zero instan-

ton number k, the theory then formally reduces to a version of supersymmetric quantum

mechanics on the corresponding moduli space of (anti) instanton configurations. But in

practice, this model is difficult to analyze.

In section four, we instead turn to the case of zero instanton number k = 0. In the

weak coupling limit, the theory then localizes on the moduli space of flat connections.

At generic points on such a moduli space, the gauge group is spontaneously broken to an

abelian subgroup. It is easy to see that this does not give rise to any BPS-states (or vacuum

states). But non-abelian gauge symmetry is restored at orbifold singularities of the moduli

space, and here the analysis is much more subtle. The zero-modes of the Yang-Mills theory

(i.e. the modes that, in a suitable gauge, are constant over T 4) may then be modeled by

supersymmetric matrix quantum mechanics with sixteen supercharges based on the Lie

algebra of the unbroken gauge group. Quantization of this model is notoriously difficult,

but there are firm conjectures concerning the existence of gauge-invariant normalizable

zero-energy ground states. These played a major role in [2] to analyze the vacua of (2, 0)

theory. To investigate the BPS-states of (2, 0) theory, we would also need to understand

the space of gauge-covariant ground states of matrix quantum mechanics. I would think

that it should eventually be possible to make further progress on this issue. This would

be very interesting and provide a welcome consistency check on the whole picture, but we

will not pursue it here.

Instead, we focus on the case where the moduli-space of flat connections consists of

isolated points. There is then no issue about zero-modes, and fluctuations around such

configurations can be reliably analyzed by semi-classical methods. In this way, we can

determine the space of states that saturates the energy bound (1.8) at tree level. Most

of these states will not actually be BPS, though, since higher perturbative corrections

may raise the energy above this bound. This can be expected to happen for all states

with an Sp(4) representation of the form (1.16). But representations that are only of the

– 4 –
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form (1.13) are protected. We may thus determine the contribution of an isolated flat

connection to the BPS representation (1.13) modulo representations of the form (1.16), i.e.

we may determine the image [R(f,p)]of R(f,p) in the corresponding quotient of the Sp(4)

representation ring. Furthermore, assuming that all representations of the form (1.16) in

fact do belong to non-BPS states allows us to make a concrete proposal for the actual

representation R(f,p) of the BPS states.

In section five, we restrict our attention to the A-series, so that G = SU(n) for some n.

The reason is that, for certain principal Gadj bundles, all flat connections are then isolated

and can be treated as described above. (The case when n is prime is particularly conve-

nient.) In this way, we arrive at a proposal for the BPS representations R(f,p) for many

values of the pair (f, p) subject to (1.6).

2 From (2, 0) theory to supersymmetric Yang-Mills theory

2.1 The momentum and the ’t Hooft flux

As discussed in the introduction, the flat five-torus T 5 can be constructed as

T 5 = R
5/Λ, (2.1)

where R
5 is endowed with the standard flat metric, and Λ ⊂ R

5 is a rank five lattice. It

follows that

Λ ≃ H1(T
5,Z). (2.2)

Let now λ5 ∈ Λ be a primitive lattice vector, which we complete to a basis λ1, . . . , λ5

of Λ. The dual basis of the dual lattice

Λ∗ ≃ H1(T 5,Z) (2.3)

is denoted λ1, . . . , λ5. We decompose the lattice Λ as

Λ = Λ̃ ⊕ (λ5 ⊗ Z), (2.4)

where Λ̃ is the rank four lattice generated by λ1, . . . , λ4. (In general, we denote four-

dimensional quantities with a tilde.) After an SO(5) spatial rotation, we may assume that

R
4 = Λ̃ ⊗ R is the standard four-dimensional subspace

R
4 = {(x1, . . . , x5) ∈ R

5|x5 = 0} (2.5)

of R
5. Finally we define a flat four-torus T 4 as

T 4 = R
4/Λ̃. (2.6)

So topologically,

T 5 = T 4 × S1, (2.7)

where

S1 = (λ5 ⊗ R)/(λ5 ⊗ Z) (2.8)
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is a circle in the direction of λ5. The (2, 0) theory can now be regarded as an ultra-violet

completion of maximally supersymmetric Yang-Mills theory on

R × T 4, (2.9)

where the first factor denotes time.

The gauge group of the Yang-Mills theory is

Gadj = G/C, (2.10)

where the G is the simply connected (and simply laced) Lie group corresponding to the

element Φ of the ADE-classification. It is important to note that the gauge group is not

simply connected (unless Φ = E8). Indeed,

π1(Gadj) ≃ C. (2.11)

The next step in defining the theory is to choose a gauge bundle P , i.e. a principal Gadj

bundle over T 4. The isomorphism class of P is determined by two characteristic classes:

The magnetic ’t Hooft flux

m = m12λ
1 ∪ λ2 + . . .+m34λ

3 ∪ λ4 ∈ H2(T 4, C), (2.12)

which is the obstruction against lifting P to a principal G-bundle over T 4, and the (frac-

tional) instanton number

k ∈ H0(T 4,R) ≃ R. (2.13)

The classes m and k may not be chosen independently, but are correlated as

k −m ·m ∈ Z. (2.14)

Here we have defined the product m ·m ∈ R/Z by

m ·m = m12m34 +m13m42 +m14m23, (2.15)

with the multiplications given by the pairing on C. (The components of m are antisym-

metric in the sense that m12 = −m21, et cetera in additive notation.) Clearly the definition

of m ·m is invariant under the SL4(Z) mapping class group of T 4. (We caution the reader

that the quantity m ·m is denoted as 1
2m ·m in many papers including [2].

The group Ω̃ = Aut(P ) of gauge transformations may be identified with the space of

sections of the associated bundle

Ad(P ) = P ×Ad Gadj, (2.16)

where Ad denotes the adjoint action of Gadj on itself. We let Ω0 denote the connected

component of Ω̃, and define the quotient group Ω of ‘large’ gauge transformations as

Ω = Ω̃/Ω0 ≃ Hom(π1(T
4), C) ≃ H1(T 4, C). (2.17)

– 6 –
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A physical state must be invariant under Ω0, but may transform with non-trivial phases

under Ω. These transformation properties are described by the electric ’t Hooft flux

e = e123λ
1 ∪ λ2 ∪ λ3 + . . .+ e234λ

2 ∪ λ3 ∪ λ4 ∈ H3(T 4, C∗) (2.18)

of the state. Here

C∗ = Hom(C,U(1)) (2.19)

is the Pontryagin dual of C. Indeed, we have

H3(T 4, C∗) ≃ Hom(H1(T 4, C),U(1)) ≃ Hom(Ω,U(1)). (2.20)

Furthermore, the pairing on C induces an isomorphism C ≃ C∗, so e can also be regarded

as an element of H3(T 4, C).

We can now describe the relationship between (2, 0) theory and Yang-Mills theory in

somewhat more detail. By the Künneth isomorphism

H3(T 5, C) ≃ H2(T 4, C) ⊕H3(T 4, C), (2.21)

the ’t Hooft flux

f = f123λ
1 ∪ λ2 ∪ λ3 + . . . + f345λ

3 ∪ λ4 ∪ λ5 ∈ H3(T 5, C) (2.22)

of the (2, 0) theory decomposes into the magnetic and electric ’t Hooft fluxes m and e of

the Yang-Mills theory:

f = m ∪ λ5 + e. (2.23)

Similarly, under the Künneth isomorphism

H1(T 5,R) ≃ H0(T 4,R) ⊕H1(T 4,R), (2.24)

the five-dimensional momentum p decomposes into the instanton number k over T 4 and

the four-dimensional momentum p̃:

p = k ∪ λ5 + p̃. (2.25)

We are now in a position to understand the shifted quantization law (1.6). In analogy

with (2.15), we define a product m · e ∈ H1(T 4,R/Z) as

m · e = (m · e)1λ
1 + . . .+ (m · e)4λ

4, (2.26)

where e.g.

(m · e)1 = m12e134 +m13e142 +m14e123 ∈ R/Z (2.27)

and similarly for the components (m · e)2, . . . , (m · e)4. Consider now a continuous spatial

translation along a closed curve representing some homology class

λ̃ ∈ H1(T
4,Z) ≃ Λ̃. (2.28)

– 7 –
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For a bundle with magnetic ’t Hooft flux m, this is equivalent to a large gauge transfor-

mation parametrized by

ω = m[λ̃] ∈ H1(T 4, C) ≃ Ω, (2.29)

i.e. the 2-cohomology class m is partially evaluated on the one-cycle λ̃ resulting in a 1-

cohomology class ω. A state with electric ’t Hooft flux e then transforms with a phase

ω ∪ e ∈ H4(T 4,U(1)) ≃ U(1), (2.30)

which in fact equals

(m · e)[λ̃] ∈ R/Z ≃ U(1). (2.31)

So the four-dimensional momentum p̃ ∈ H1(T 4,R) obeys the quantization law

p̃−m · e ∈ H1(T 4,Z) ≃ Λ̃∗. (2.32)

Together with the relation (2.14), this is equivalent to (1.6), where the components of

f · f = (f · f)1λ
1 + . . . + (f · f)5λ

5 ∈ H1(T 5,R/Z) (2.33)

are given by

(f · f)1 = f123f145 + f124f153 + f125f134 ∈ R/Z (2.34)

and similarly for (f ·f)2, . . . , (f ·f)5. Again, although we have expressed various quantities

relative to the chosen basis λ1, . . . , λ5 of Λ, the formalism is actually covariant under the

SL5(Z) mapping class group of T 5.

2.2 The fields and the action

For a given gauge bundle P , we introduce an associated vector bundle over T 4

ad(P ) = P ×ad gadj, (2.35)

where ad denotes the adjoint action of Gadj on its Lie algebra gadj (which of course equals

the Lie algebra of G). Maximally supersymmetric Yang-Mills theory on R×T 4 with gauge

group Gadj contains the following fundamental fields:

• A connection D on P , locally represented by a connection one-form A with values

in ad(P ). (We work in temporal gauge, so the time-component of the connection

one-form is identically zero.) The magnetic field strength F = dA+A∧A is a global

section of Ω2(T 4) ⊗ ad(P ).

• Five sections φ of ad(P ) transforming in the 5 representation of Sp(4) .

• Four fermionic sections ψ of S⊗ad(P ), where S = S+⊕S− is the sum of the positive

and negative chirality spinor bundles over T 4 (for the trivial spin structure). They

transform in the 4 representation of Sp(4).

– 8 –
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The complete Lagrangian is most easily obtained by dimensional reduction from 1 + 9

to 1+4 dimensions [4]. But to begin with, we will focus our attention on the terms involving

only the connection one-form A, i.e.

1

2g2

∫

T 4

Tr
(

Ȧ ∧ ∗Ȧ− F ∧ ∗F
)

, (2.36)

where Tr denotes a suitably normalized bilinear form on gadj, and

∗ : Ωk(T 4) → Ω4−k(T 4) (2.37)

is the Hodge duality operator constructed from the flat metric on T 4. (Time derivatives

are denoted with a dot.) The coupling constant g is related to the circumference of the S1

factor of T 5 = T 4 × S1, i.e. to the magnitude of the lattice vector λ5:

g2 = |λ5|. (2.38)

Here we have for simplicity assumed that λ5 is orthogonal to the subspace R
4 spanned by

the rank four lattice Λ̃. Otherwise, the Lagrangian would contain a further CP-violating

term, analogous to the familiar theta-angle term in (1 + 3)-dimensional Yang-Mills theory.

The canonical conjugate to the connection one-form A is a section E (the electric field

strength) of Ω1 ⊗ ad(P ) given by

E =
1

g2
Ȧ. (2.39)

The Hamiltonian becomes

H =
g2

2

∫

T 4

Tr (E ∧ ∗E) +
1

2g2

∫

T 4

Tr (F ∧ ∗F ) , (2.40)

and the momentum corresponding to a translation by a constant spatial vector v on T 4 is

ιvp̃ =

∫

T 4

Tr (ιvF ∧ ∗E) . (2.41)

One way to view this theory is to regard it as describing a fictitious particle of mass

µ = 1
g2 moving on the flat infinite-dimensional Euclidean space of connections A, under

the influence of a potential

V =
1

2g2

∫

T 4

Tr(F ∧ ∗F ). (2.42)

3 The weak coupling limit

3.1 The energy bound

For a fixed non-zero value of the instanton number

k =
1

2

∫

T 4

Tr(F ∧ F ), (3.1)

the potential (2.42) is bounded from below by

V ≥
|k|

g2
. (3.2)

– 9 –
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For positive (negative) k, the bound is saturated for connections A with anti self-dual

(self-dual) curvature F , i.e. F = − ∗ F (F = ∗F ). Furthermore, by the Cauchy-Schwarz

inequality, the magnitude square |p̃|2 of the four-dimensional momentum is then bounded

from above by

|p̃|2 =
∑

v

(ιv p̃)
2 ≤

∫

T4

Tr(F ∧ ∗F )

∫

T 4

Tr (E ∧ ∗E) = |k|

∫

T 4

Tr (E ∧ ∗E) , (3.3)

where v is summed over an orthonormal basis of tangentvectors to T 4. So for fixed positive

k and fixed p̃, the energy is bounded from below by

H ≥
k

g2
+
g2

2k
|p̃|2 + O(g4). (3.4)

This agrees with the magnitude |p| of the five-dimensional momentum p decomposed as

in (2.25) into components p̃ and k along T 4 and S1 respectively, and thus confirms the

correctness of this decomposition.

When k = 0, we instead have the inequality

H ≥

∫

T 4

Tr

(

1

2g2
ιvF ∧ ∗ιvF +

g2

2
E ∧ ∗E

)

= ιvp̃+
1

2

∫

T 4

Tr

(

1

g
ιvF − gE

)

∧ ∗

(

1

g
ιvF − gE

)

≥ ιvp̃, (3.5)

where v is an arbitrary tangent vector on T 4. So the energy bound in this case is

H ≥ |p̃|, (3.6)

again in agreement with (2.25).

3.2 The instanton moduli space

For given values of the characteristic classes k and m with k > 0 (k < 0), we let Mk,m

denote the corresponding moduli space of (anti) instanton solutions. In the weak coupling

limit g → 0, the theory formally reduces to a supersymmetric quantum mechanical model

describing a particle of mass µ = 1
g2 moving on Mk,m. (The zero-point fluctuations of the

modes of the connection one-form A transverse to Mk,m together with the contributions

of the scalar fields φ cancel against the contributions of the fermionic fields ψ, since the

corresponding eigenvalues agree [5].) But this model is not easy to analyze, one reason being

that, according to (3.4), the energy gap between states of different momenta p̃ vanishes in

the weak coupling limit.

We will thus not attempt a complete treatment of this quantum mechanics, but content

ourselves with a few remarks on its degrees of freedom. In the weak coupling limit g → 0,

the terms in the Yang-Mills Lagrangian involving the scalar fields φ and the spinor fields

ψ become
∫

T 4

Tr
(

φ̇ ∧ ∗φ̇−Dφ ∧ ∗Dφ
)

. (3.7)
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and ∫

T 4

VolT 4Tr
(

ψ̄(γ0ψ̇ + γ ·Dψ)
)

(3.8)

respectively. Here γ0 and γ denote the time-like and spatial Dirac matrices. At a generic

point A in Mk,m, the scalar Laplacian

∆ = ∗D ∗D : Γ(ad(P )) → Γ(ad(P )) (3.9)

is strictly positive, so we need not take the scalar fields into account. For positive k, there

are no negative chirality zero modes for the spatial Dirac operator

γ ·D : Γ(S ⊗ ad(P )) → Γ(S ⊗ ad(P )). (3.10)

The number of positive chirality zero modes is thus given by the Atiyah-Singer index

theorem as c2(ad(P )). (The signature and Euler characteristic of T 4 both vanish.)

Let now ψ be a positive chirality zero-mode, i.e. a solution to the spatial Dirac equation

γ ·Dψ = 0. (3.11)

We can then construct two tangent vectors δA to Mk,m at the point A. In background

Coulomb gauge D · δA = 0, they take the form

δA = η̄γψ, (3.12)

where η̄ is an arbitrary constant spinor of positive chirality. Indeed, the induced variation

δF of the field strength

δF = η̄(γ ∧D)ψ (3.13)

is easily seen to be anti-self dual by using the chirality condition on η̄ and the Dirac

equation (3.11). In fact, Mk,m is a curved hyperkähler manifold of real dimension

dimM = p1(ad(P )) = 2c1(ad(P )), (3.14)

so, since there are two linearly independent choices of η̄, these δA span the whole tangent

space of Mk,m at A.

We may construct two distinguished fermionic zero modes ψ as the Clifford product

of F and an arbitrary constant spinor κ of positive chirality:

ψ = Fκ. (3.15)

Indeed, it follows from the Bianchi identity DF = 0 and the anti self-duality of F that

such a ψ fulfills (3.11). The corresponding tangent vectors δA to Mk,m at A are

δA = ιvF, (3.16)

where the constant vector v on T 4 is given by

v = η̄γκ. (3.17)
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Using the Bianchi identity DF = 0, the induced variation of the field strength comes out

to be given by the Lie derivative of F along v:

δF = LvF, (3.18)

so this tangent vector δA represents a translation of the instanton configuration on T 4. Such

translations generically act non-trivially on Mk,m, which thus can be seen as a fibration

with T 4 fiber over a hyper Kähler manifold M′
k,m of real dimension 4(nk − 1). (It should

be noted, though, that Mk,m might be empty [6].) The wave function of a BPS state

of four-dimensional momentum p̃ is (locally) constant on M′
k,m and depends on the fiber

coordinates x̃ ∈ T 4 = R
4/Λ̃ as exp(p̃ · x̃). Because of the quantization of the fermionic

zero-modes, this will in fact be a multi-component wave function.

4 Flat connections

A bundle P of vanishing instanton number, i.e.

k = 0, (4.1)

necessarily has a magnetic ’t Hooft flux m ∈ H2(T 4, C) obeying

m ·m = 0. (4.2)

For such a bundle, the potential (2.42) attains its minimum value V = 0 for connections

A with vanishing field strength

F = 0. (4.3)

In the weak coupling limit g → 0, the theory thus localizes on a neighborhood of the moduli

space M0,m of such flat connections.

The moduli spaces M0,m are described in [2] for the A- and D-series. (For a more

general theoretical discussion, which however focuses on bundles over T 3 rather than T 4,

see [7].) In general, M0,m is a disconnected sum of several components:

M0,m =
⋃

α

Mα . (4.4)

(The range of the label α depends on the magnetic ’t Hooft flux m.) Each component Mα

is of the form

Mα = (T rα × T rα × T rα × T rα)/Wα (4.5)

for some number rα known as the rank of the component, and some discrete group Wα,

which acts on the torus T rα .

The simplest example of such a component is obtained for an arbitrary group Gadj by

considering a topologically trivial bundle P , i.e. not only k = 0 but also m = 0. There is

then a component M0 of M0,m for which r0 equals the rank of Gadj, the torus T r0 is a

maximal torus of Gadj, and the discrete group W0 is the corresponding Weyl group. But

even for such a trivial bundle P , there are in general also other components Mα of M0,m.
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Returning now to the general case, the moduli space M0,m of flat connections may be

parametrized by the holonomies

Ux̃ ∈ Hom(π1(T
4), Gadj) (4.6)

of the connection D based at some point x̃ ∈ T 4 modulo simultaneous conjugation by

elements of Gadj. (Such conjugations represent the connected component Ω0 of the group

Ω̃ of gauge transformations.) A concise way of describing the holonomy Ux̃ is to evaluate

it on the basis elements λi, i = 1, . . . , 4 of

Λ̃ ≃ H1(T
4,Z) ≃ π1(T

4). (4.7)

The resulting group elements Ux̃[λi] commute in Gadj. But an arbitrary lifting Ûx̃[λi] of

them to the simply connected groupG is in general only almost commuting in the sense that

Ûx̃[λi]Ûx̃[λj ](Ûx̃[λi])
−1(Ûx̃[λj ])

−1 = mij, (4.8)

where mij ∈ C denotes the corresponding component in the expansion of the magnetic

’t Hooft flux m.

Letting x̃ vary over T 4 and evaluating the holonomy Ux̃ on a fixed cycle λ̃ ∈ Λ̃ gives a

covariantly constant section Ux̃[λ̃] of Ad(P ), i.e.

DUx̃[λ̃] ≡ dUx̃[λ̃] + Ux̃[λ̃]A−AUx̃[λ̃] = 0. (4.9)

In other words, a large gauge transformation parametrized by Ux̃[λ̃] leaves the connection

one-form A invariant:

A→ Ux̃[λ̃]A(Ux̃[λ̃])−1 + dUx̃[λ̃](Ux̃[λ̃])−1 = A. (4.10)

Finally, we note that the topological class of this gauge transformation is given by (2.29).

4.1 Components of positive rank

The quantization of the theory on a component Mα of positive rank rα > 0, is rather

subtle. At a general point on this component, the holonomies U spontaneously break the

gauge group Gadj to a subgroup of rank rα. Generically, the Lie algebra h of this unbroken

subgroup is abelian, but in general it may be of the form

h ≃ s⊕ u(1)r, (4.11)

for some number r, 0 ≤ r ≤ rα, and some semi-simple algebra s of rank rα − r. Given

such an algebra h, we let Mh denote the closure of the corresponding subspace of M0,m.

In a neighborhood of Mh, the degrees of freedom corresponding to s are modeled by

supersymmetric quantum mechanics with 16 supercharges based on the Lie algebra s [8].

The latter theory has no mass-gap, but is believed to have a finite dimensional linear space

Vs of normalizable zero-energy states [9, 10]. An explicit construction of these quantum

mechanical states is notoriously difficult, essentially because the system has a potential with
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flat valleys extending out to infinity in field space. But this property of the supersymmetric

quantum mechanics implies that the Yang-Mills theory has dimVs normalizable zero-energy

states supported near Mh. The validity of this picture was confirmed in rather much detail

in [2].

Somehow, there should also be a spectrum of BPS states with non-zero momentum p̃

supported near Mh, but it is not clear to the present author precisely how this could be

determined. A better understanding of this issue would certainly be very useful, and we

hope that further progress can be made, but we will not pursue it here.

4.2 Isolated flat connections

The situation is better for an isolated flat connection D, i.e. a component Mα of M of rank

rα = 0. As we will now explain, fluctuations around D can be reliably analyzed by semi-

classical methods in the weak coupling limit. We thus expand the connection one-form A

around the connection one-form A of D as

A = A + ga, (4.12)

where the fluctuation a is a global section of Ω1(T 4) ⊗ ad(P ).

We let Γ(ad(P )) denote the space of L2-sections of the vector bundle ad(P ) with

respect to the sesqui-linear inner product

(α, β) =

∫

T 4

Tr(ᾱ ∧ ∗β). (4.13)

Our first task is to define a convenient basis of this space. By flatness of D, the covari-

ant derivatives

iDv : Γ(ad(P )) → Γ(ad(P )) (4.14)

commute with each other other for different constant vector fields v ∈ H1(T
4,R) on T 4. We

can then introduce an orthonormal basis bp̃ of Γ(ad(P )) of their simultaneous eigensections.

The label p̃ can be thought of as taking its values in a subset P̃ of H1(T 4,R), and is defined

so that the corresponding eigenvalues are 2πp̃[v]:

iDvbp̃ = 2πp̃[v]bp̃ (4.15)

(We are suppressing any further labels that are possibly needed to distinguish different

sections with the same eigenvalues. But for the A-series, which we will treat in more detail

in the next section, there is in fact no such degeneracy.) The complex conjugate of bp̃
is (bp̃)

∗ = b−p̃. The bp̃ are also eigensections of the adjoint action of the holonomy Ux̃

evaluated on a cycle λ̃ ∈ H1(T
4,Z) ≃ Λ̃ based at some point x̃ ∈ T 4:

Ux̃[λ]bp̃(Ux̃[λ])−1 = z̃[λ]bp̃, (4.16)

where the eigenvalue z̃[λ] is a phase determined by

z̃ = exp(2πip̃) ∈ H1(T 4,U(1)). (4.17)
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The set P̃ of possible values of p̃ is actually best described by giving the subset Z̃ ⊂

H1(T 4,U(1)) of possible values of z̃. The cardinality of this set equals the dimension of

the group G, and, since the flat connection D is isolated, it does not comprise the trivial

element of H1(T 4,U(1)). We then have

P̃ = {p̃ ∈ H1(T 4,R)| exp 2πip̃ ∈ Z̃}. (4.18)

The fluctuation a in (4.12) can now be expanded as

a =
∑

p̃∈P̃

ap̃bp̃, (4.19)

with some coefficients ap̃ that are vectors on T 4. In background Coulomb gauge D · a = 0,

ap̃ is constrained by the condition p̃ · ap̃ = 0, and thus takes its values in a 3-dimensional

linear space transforming as 1⊕ 1⊕ 1 under the Sp(4) R-symmetry. Similarly, we expand

the scalar fields φ and the spinor fields ψ as

φ =
∑

p̃∈P̃

φp̃bp̃

ψ =
∑

p̃∈P̃

ψp̃bp̃. (4.20)

Here the coefficients φp̃ are a set of spatial scalars transforming in the 5 representation,

and the coefficients ψp̃ are a set of spatial spinors transforming in the 4⊕ 4 representation

of Sp(4). In the g → 0 weak coupling limit, the surviving terms of the Lagrangian are

1

2g2

∫

T 4

Tr(Ȧ ∧ ∗Ȧ− F ∧ ∗F ) =
∑

p̃∈P̃

(ȧp̃ · ȧ−p̃ + p̃ · p̃ap̃a−p̃)

∫

T 4

Tr(φ̇ ∧ ∗φ̇−Dφ ∧ ∗Dφ) =
∑

p̃∈P̃

(φ̇p̃φ̇−p̃ + p̃ · p̃φp̃φ−p̃)

∫

T 4

VolT 4Tr(ψ̄γ0ψ̇ + ψ̄γ ·Dψ) =
∑

p̃∈P̃

(ψp̃γ
0ψ̇−p̃ + ψp̃p̃ · γψ−p̃). (4.21)

So for each p̃ ∈ P̃ , there is a set of bosonic harmonic oscillators ap̃ and φp̃ with temporal

frequency |p̃| transforming in the representation

B = 1⊕ 1 ⊕ 1⊕ 5, (4.22)

and a set of fermionic harmonic oscillators ψp̃ with the same frequency transforming in the

representation

F = 4⊕ 4. (4.23)

4.3 The Hilbert space

We will now quantize the fluctuations around an isolated flat connection D. Let |A〉

denote the corresponding vacuum state of vanishing energy and momentum. Acting on this
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state with a string of bosonic and fermionic creation operators of the harmonic oscillators

associated to a single value p̃ ∈ P̃ builds up a (pre-) Hilbert space Hp̃. The complete

Hilbert space H is (the Hilbert space completion of) the tensor product

H =
⊗

p̃∈P̃

Hp̃. (4.24)

There is a further subtlety that needs to be considered: If λ̃ ∈ H1(T
4,Z) is such that m[λ̃] =

0, a gauge transformation parametrized by the holonomy Ux̃[λ̃] belongs to the connected

component Ω0 of the group of gauge transformations Ω̃. We must then project the Hilbert

space H onto the subspace Hinv of states that are invariant under such transformations.

According to (4.16), this is a non-trivial projection if there are z̃ ∈ Z̃ such that the phase

z̃[λ̃] is non-trivial. However, as we will see in the next section, this does not happen for

the A-series.

In the g → 0 weak coupling limit, a creation operator labeled by some p̃ ∈ P̃ adds an

amount |p̃| to the energy and an amount p̃ to the momentum. The total energy E and

momentum p̃ of a state constructed by acting on the vacuum |A〉 with a string of creation

operators labeled by p̃1, . . . p̃k ∈ P̃ are thus

E = |p̃1| + . . . + |p̃k|

p̃ = p̃1 + . . .+ p̃k. (4.25)

If p̃1, . . . , p̃k are all parallel vectors, the state is light-like in the sense that E = |p̃|. As

discussed in the introduction, this is a necessary condition for it to be BPS. But it is not

sufficient: For a non-zero value of the coupling g, the above expression for the momentum

p̃ of the state will still be correct, but the energy E might be higher than the value

stated above so that E > |p̃|. Indeed, already the known terms in the Lagrangian can be

expected to generate such corrections at higher orders in perturbation theory, and there

are presumably further unknown terms in the Lagrangian of arbitrarily high powers in the

fields multiplied by appropriate powers of g, which may give further contributions. So most

of these states, while light-like at tree level, can actually be expected to be non-BPS.

To gain more information about which states actually are BPS, we need to consider

the transformation properties under the Sp(4) R-symmetry. For a fixed p̃ ∈ P̃ , the states

of Hp̃ with total momentum kp̃ for a positive integer k transform in the representation Zk

given by

Zk = F 0
a ⊗Bk

s ⊕ F 1
a ⊗Bk−1

s ⊕ . . .⊕ F 8
a ⊗Bk−8

s . (4.26)

Here the subscripts a and s denote the alternating and symmetric products of the bosonic

and fermionic representations respectively. (If k < 8, the terms with negative powers of B

are absent.) The dimension of this representation is

dimZk =

(

8

0

)(

k + 7

7

)

+

(

8

1

)(

k + 6

7

)

+ . . .+

(

8

8

)(

k − 1

7

)

=
16

315
(132k + 154k3 + 28k5 + k7). (4.27)
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We will give a more precise description of Zk in the next subsection, but at the moment

we just note that by supersymmetry,

Zk = (B ⊕ F ) ⊗Wk (4.28)

for some representation Wk. We decompose

Wk = (B ⊕ F ) ⊗R′
k ⊕Rk, (4.29)

where the representations R′
k and Rk are chosen so that R′

k is as large as possible. Thus

Zk = (B ⊕ F )2 ⊗R′
k ⊕ (B ⊕ F ) ⊗Rk, (4.30)

The states transforming according to the second term must be BPS. Presumably most of

the states transforming according to the first term are non-BPS, unless some additional

symmetry or other principle that we have not taken into account forces them to be BPS.

Somewhat more cautiously, our conclusion might be phrased as follows: While the BPS

states are not necessarily given by the representation Rk appearing in (4.30), at least the

true BPS representation agrees with Rk when interpreted as an element in the quotient ring

RC(Sp(4))/I. (4.31)

Here RC(Sp(4)) is the representation ring of Sp(4), and I is the ideal generated by the

representation B ⊕ F .

Sofar, we have considered the states of a single factor Hp̃ for p̃ ∈ P̃ . A state of total

momentum p̃ ∈ H1(T 4,R) (which is not necessarily an element of P̃ ) in the complete Hilbert

space H is clearly non-BPS if oscillators of different values p̃1, . . . , p̃k ∈ P̃ are excited, since

such a state is not even light-like at tree level. But if only k oscillators of momentum

p̃/k ∈ P̃ are excited, we can apply our previous reasoning and argue that (at least) a set of

states transforming as (B⊕F )⊗Rk are BPS. Taking all possible values of k into account,

we thus conjecture that the BPS states of some fixed momentum p̃ ∈ H1(T 4,R) transform

as (B ⊕ F ) ⊗R where

R =
∑

k|p̃

Rk. (4.32)

Here the sum is over all positive integers k that divide p̃ in the sense that p̃/k ∈ P̃ . Again,

we have a rigorous statement in the quotient ring (4.31).

4.4 Some Sp(4) representation theory

We will now work out the precise form of the representation Rk for a given value of k.

An irreducible representation Vk1,k2
of the Sp(4) R-symmetry group is labelled by two

non-negative integers k1 and k2 (the Dynkin labels). By the Weyl dimension formula, the

dimension of this representation is

dimVk1,k2
=

1

6
(1 + k1)(1 + k2)(2 + k1 + k2)(3 + 2k1 + k2). (4.33)
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We have e.g.

V0,0 = 1

V0,1 = 4

V1,0 = 5. (4.34)

In particular, the symmetric powers of the representation 5 are given by

5k
s =

{

V0,0 ⊕ V2,0 ⊕ . . .⊕ Vk,0 for even k

V1,0 ⊕ V3,0 ⊕ . . .⊕ Vk,0 for odd k.
(4.35)

It follows that

Bk
s =

k
⊕

k1=0

Nk−k1
× Vk1,0, (4.36)

where the multiplicities Nl are given by

Nl =

{

1
24(24 + 34l + 15l2 + 2l3) for even l
1
24(21 + 34l + 15l2 + 2l3) for odd l.

(4.37)

After some more work, it transpires that the representations Rk and R′
k defined above

are (almost) given by

Rk = 3 × Vk−2,0

⊕ Vk−1,0

⊕
k−3
⊕

k1=0

(4k − 4k1 − 6) × Vk1,0

⊕

k−2
⊕

k1=0

(2k − 2k1 − 4) × Vk1,1 (4.38)

and

R′
k =

⊕

k1=0,k−4

Nk−4−k1
× Vk1,0. (4.39)

Their dimensions are

dimRk =
1

15
(8k + 5k3 + 2k5) (4.40)

and

dimR′
k =

1

7!
(k − 3)(k − 2)(k − 1)k(k + 1)(k + 2)(k + 3). (4.41)

These representations obey equation (4.30), but not quite the requirement that R′
k be as

large as possible. In fact, for k ≥ 3 it is possible to add up to k − 2 trivial representations

V0,0 to R′
k and remove the same number of representations

B ⊕ F = 3 × V0,0 ⊕ V1,0 ⊕ 2 × V0,1 (4.42)

from Rk. I do not know of any argument to prove that these terms indeed correspond to

BPS states, and thus should be included in Rk rather than R′
k, except that the formu-

las (4.38) and (4.39) look simpler that way.
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5 The A-series

To be able to use the analysis of the previous section, we must consider a gauge group Gadj

and a magnetic ’t Hooft flux m ∈ H2(T 4, C) such that the corresponding moduli space

M0,m of flat connections only consists of components Mα of rank rα = 0, i.e. of isolated

flat connections. This will restrict us to the A-series and prime values of the magnetic

’t Hooft flux. But again, one could hope to eventually be able to analyze also components

of positive rank, so that arbitrary groups and ’t Hooft fluxes could be treated.

Consider thus the case Φ = An−1 for some positive integer n. The corresponding

simply connected group G = SU(n) consists of unimodular n × n matrices. Its center

subgroup C consists of matrices of the form exp(2πic/n)1ln, where c ∈ Zn ≃ C. The inner

product on C is given by

c · c′ =
1

n
cc′ ∈ R/Z, (5.1)

for c, c′ ∈ Zn.

For m ∈ H2(T 4,Zn), we define the SL4(Z) invariant u as the greatest common divisor

of the components of m and n:

u = gcd(m12, . . . ,m34, n). (5.2)

We can then write

m = um′ (5.3)

for some m′ ∈ H2(T 4,Zn/u), and define a further SL4(Z) invariant m′ ·m′ ∈ Zn/u as

m′ ·m′ = m′
12m

′
34 +m′

13m
′
42 +m′

14m
′
23. (5.4)

One can show (see e.g. [2]) that all the connected components Mα of the moduli space

M0,m of flat connections have the same rank rα given by

rα = u

/

n/u

gcd(m′ ·m′, n/u)
− 1, (5.5)

provided that this quantity is an integer. (Otherwise, M0,m is empty.) So we get rα = 0

if e.g.

u = 1 (5.6)

and

m ·m = 0. (5.7)

In fact, there is then a unique isolated flat connection A. (There are, up to simultaneous

conjugation, n2 different quadruples Ûx̃[λi] ∈ G, i = 1, . . . , 4 that fulfill the almost com-

mutation relations (4.8), but they project to a unique quadruple Ux̃[λi] ∈ Gadj.) We can

describe this connection via the adjoint action of its holonomies on the space of sections

Γ(ad(P )) as in (4.16). The set Z̃ in which z̃ takes its values can then be regarded as a

subset of the cohomology group

H1(T 4,Zn) ≃ H1

(

T 4,
1

n
Z/Z

)

⊂ H1(T 4,R/Z) ≃ H1(T 4,U(1)). (5.8)
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In fact,

Z̃ =
{

z̃ ∈ H1(T 4,Zn)
∣

∣

∣
z̃ 6= 0, z̃ ∧m = 0

}

. (5.9)

Note that the cardinality of Z̃ equals the dimension n2−1 of G = SU(n). It is not difficult

to check that for a given value of z̃ ∈ Z̃, there exists a corresponding value of the electric

’t Hooft flux e ∈ H3(T 4,Zn), unique modulo terms of the form m ∧ t for t ∈ H1(T 4,Zn),

such that

z̃ = m · e ∈ H1

(

T 4,
1

n
Z/Z

)

. (5.10)

According to (2.31), it is then consistent to declare that the corresponding harmonic os-

cillators are invariant under topologically trivial gauge transformations, and transform

under ‘large’ gauge transformations according to e. There is thus no need to project onto

states invariant under gauge transformations in the connected component Ω0. The four-

dimensional momentum p̃ of the harmonic oscillators takes its values in the set P̃ defined

in (4.18):

P̃ =

{

p̃ ∈ H1

(

T 4,
1

n
Z

)

∣

∣

∣
np̃ 6= 0, (np̃) ∧m = 0

}

, (5.11)

where np̃ ∈ H1(T 4,Z).

5.1 The case of n prime

The conditions on u and m′ ·m′ are not as restrictive as they may seem: For each possible

value of m, there are n4 different values of e ∈ H3(T 4, C), and the resulting values of

f = m + e actually give representatives of many SL5(Z) orbits of f . e.g. for n prime (so

that u = 1), there are n+ 1 SL4(Z) orbits of m:

orbit cardinality

m = 0 1

m 6= 0,m ·m = 0 n5 + n3 − n2 − 1

m ·m = 1/n n5 − n2

. . . . . .

m ·m = (n− 1)/n n5 − n2

n6

(5.12)

But there are only 3 SL5(Z) orbits of f :

orbit cardinality

f = 0 1

f 6= 0, f · f = 0 n7 + n5 − n2 − 1

f · f 6= 0 n10 − n7 − n5 + n2

n10

(5.13)

The relationship between these orbits is

m = 0 m ·m = 0 m ·m = 1/n . . . m ·m = (n − 1)/n

f = 0 1 . . .

f · f = 0 n4 − 1 n2 . . .

f · f 6= 0 n4 − n2 n4 . . .

(5.14)
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where the entries denote the number of e-values for a given m in the corresponding SL4(Z)

orbit that gives an f in the corresponding SL5(Z) orbit. So although only the m 6= 0,

m ·m = 0 orbit has an isolated flat connection, this makes calculations possible for all f ,

except the single value f = 0.

Finally, we consider the action of SL5(Z) on the set of pairs (f, p) obeying (1.6): For

the f = 0 orbit, we have p ∈ H1(T 5,Z). There is then one orbit for each positive integer

value of

gcd(p) = gcd(p1, . . . , p5). (5.15)

But as discussed above, we have no results for the corresponding BPS spectrum. Also for

the f 6= 0, f · f = 0 orbit, we have p ∈ H1(T 5,Z). But here there are two orbits for each

positive integer value of gcd(p), distinguished by

f ∧ (p/ gcd(p)) ∈ H4(T 5, C) (5.16)

being zero or non-zero. In both cases, the BPS spectrum could be determined as described

above by choosing a decomposition (2.4) of Λ such that the component k in the decomposi-

tion (2.25) of p vanishes. In fact the BPS spectrum is empty when f ∧ (p/ gcd(p)) 6= 0. For

the f ·f 6= 0 orbit, we consider np ∈ H1(T 5,Z) instead of p ∈ H1(T 5, 1
nZ). There is then one

orbit for each finite value of gcd(np) = gcd(np1, . . . , np5). (Necessarily f ∧ (np/ gcd(np)) =

0 in this case.) Also here, our methods allow for a determination of the BPS spectrum.
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